ГлавнаяРегистрацияВход Arhi-Logos essays
Вторник, 26.09.2017, 23:01
Форма входа
Поиск по сайту

Меню сайта

Категории раздела
хроника
здоровье
обучение
финансы
технологии
история
разное
космос

Посетители

Статистика

Яndex, Openstat
Яндекс.Метрика

Календарь
«  Апрель 2015  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
27282930

Архив записей

Поддержать автора
через Яндекс-деньги
через Visa или MasterCard

Главная » 2015 » Апрель » 10 » Как измерить окружность Земли?
00:45
Как измерить окружность Земли?

   У меня периодически появляется ощущение что многие простые вещи специально излагаются так, чтобы читатель ничего не понимал и тупо заучивал, либо прочувствовал свою ничтожность перед изощренностью науки. Это всецело относится к известному по школьным учебникам феерическому способу Эратосфена измерения окружности земного шара. Может быть он на самом деле вычислял таким извращенским способом, но зачем этот бред тиражировать со школы? 

   О том, как можно запудрить мозги в простом вопросе, посмотрим на примере вычисления длины окружности Земли в морских милях, который является частным случаем измерения широты местности и длины пройденного пути по меридиану.

   Если современному человеку дать задачу вычислить длину окружности Земли в морских милях, он в подавляющем большинстве случаев заглянет в интернет/справочники и решит примерно так: длину окружности Земли например по парижскому меридиану 40.000 км с помощью калькулятора разделит на современную морскую милю 1,852 км и получит 21.598,3 морских миль, что будет близко к действительности.

   Теперь покажу как вычислить длину окружности Земли в уме и абсолютно точно. Для этого надо знать только одно: "Морская миля — единица измерения расстояния, применяемая в мореплавании и авиации. Первоначально морская миля определялась как длина дуги большого круга на поверхности земного шара размером в одну угловую минуту." via

морская миля угловая минута

   В одном угловом градусе 60 минут, в окружности - 360 градусов, то есть в окружности 360х60=21.600 угловых минут, что в данном случае соответствует длине окружности земного шара в 21.600 морских миль. И это - абсолютно точно, поскольку длина окружности земного шара по меридиану является эталоном, а угловая минута-миля - производная единица. Поскольку Земля - не идеальный сфероид, а слегка кривоватый, то мили на разных меридианах будут немного отличаться друг от друга, но это совершенно неважно для навигации, ибо угловая минута - она и в Африке угловая минута.

   Широту местности с точностью до градусов вполне можно измерить даже примитивными приспособлениями вроде транспортира с отвесом, который не сильно отличается от реально применявшегося моряками квадранта и по существу то же самое что и астролябия:

измерение широты транспортиром по Полярной звезде   измерение углов квадрантом измерение углов астролябией

 Для более точных измерений углов впоследствии был изобретен секстант (мор. арго - секстан):

секстант

    Современные люди слабо представляют себе что такое аналоговые вычислительные машины и как ими пользоваться. Для того, чтобы вычислить расстояние между двумя точками в меридиональном направлении, надо всего лишь измерить широты точек, а разность широт выраженная в угловых минутах и будет расстоянием между ними в морских милях. Все просто, удобно и практически применимо.

   Если уж так сильно хочется выяснить сколько в морской миле стадий, саженей, аршинов или там египетских локтей, надо аккуратно на коленках промерить ими расстояние между точками с известным расстоянием в морских милях-угловых минутах. Но зачем? Как это практически применимо?

   Эратосфен будто бы измерял углы с точностью до угловых секунд и разница широт Александрии составила у него 7° 6,7', то есть 7х60=420+6,7=426,7 морских миль (угловых минут). Кажется, что еще надо? Но ему почему-то требуются дни пути верблюдов и стадии. Возникает ощущение чего-то надуманного - фейка или розыгрыша.

   Метод Эратосфена согласно В. А. Бронштейн, Клавдий Птолемей, Гл.12. Работы Птолемея в области географии:

"Как известно, метод Эратосфена заключался в определении дуги меридиана между Александрией и Сиеной в день летнего солнцестояния. В этот день, по рассказам лиц, посещавших Сиену, Солнце в полдень освещало дно самых глубоких колодцев и, значит, проходило через зенит. Следовательно, широта Сиены равнялась углу наклона эклиптики к экватору, который Эратосфен определил в 23°51'20"В тот же день и час в Александрии тень от вертикального столбика гномона закрывала 1/50 часть окружности, центром которой служил кончик гномона. Это значит, что Солнце отстояло в полдень от зенита на 1/50 часть окружности, или на 7° 12'. Приняв расстояние между Александрией и Сиеной равным 5000 стадиев, Эратосфен нашел, что окружность земного шара равна 250 000 стадиев. Вопрос о точной длине стадия, принятого Эратосфеном, долгое время служил предметом дискуссий, поскольку существовали стадии длиной от 148 до 210 м <60>. Большинство исследователей принимали длину стадия 157,5 м («египетский» стадий). Тогда окружность Земли равна, по Эратосфену, 250 000-0,1575 = 39 375 км, что очень близко к действительному значению 40 008 км. Если же Эратосфен пользовался греческим («олимпийским») стадием длиной 185,2 м, то получалась окружность Земли уже 46 300 км.

По современным измерениям <97> широта Музея в Александрии 31°11,7' широта Асуана (Сиены) 24° 5,0', разница широт 7° 6,7', чему соответствует расстояние между этими городами 788 км. Деля это расстояние на 5000, получим длину стадия, использованного Эратосфеном, 157,6 м. Значит ли это, что он использовал египетский стадий?

Этот вопрос сложнее, чем может показаться. Уже одно то, что Эратосфен привел явно округленное число — 5000 стадиев (а, скажем, не 5150 или 4890) не внушает к нему доверия. А если оценка Эратосфена была завышена хотя бы на 15%, получим, что он использовал египетский стадий в 185 м. Решить этот вопрос пока нельзя." via

   Теперь обратим внимание на следующие обстоятельства:

- Асуан (Сиена) и Александрия не находятся на одном меридиане, разница по долготе составляет 3°, то есть около 300 километров.

- Эратосфен не измерил расстояние, а принял исходя из дней пути верблюдов, которые ходили явно не по прямой линии;

- Совершенно неясно каким прибором Эратосфен измерял углы с точностью до секунд;

- Непонятно какой стадий использован Эратосфеном для измерения расстояний и т.п.

   Но при этом он будто бы получил достаточно точный результат! Или историками сделана подгонка под результат?

   Из Википедии: «Эратосфен говорит, что Сиена и Александрия лежат на одном меридиане. И поскольку меридианы в космосе являются большими кругами, такими же большими кругами обязательно будут и меридианы на Земле. И поскольку таков солнечный круг между Сиеной и Александрией, то и путь между ними на Земле с необходимостью идёт по большому кругу. Теперь он говорит, что Сиена лежит на круге летнего тропика. И если бы летнее солнцестояние в созвездии Рака происходило ровно в полдень, то солнечные часы в этот момент времени с необходимостью не отбрасывали бы тени, поскольку Солнце находилось бы точно в зените; дела и в самом деле обстоят таким образом в [полосе шириной] в 300 стадиев. А в Александрии в этот же час солнечные часы отбрасывают тень, поскольку этот город лежит к югу от Сиены. Эти города лежат на одном меридиане и на большом круге. На солнечных часах в Александрии проведём дугу, проходящую через конец тени гномона и основание гномона, и этот отрезок дуги произведёт большой круг на чаше, поскольку чаша солнечных часов расположена на большом круге. Далее, вообразим две прямые, опускающиеся под Землю от каждого гномона и встречающиеся в центре Земли. Солнечные часы в Сиене находятся отвесно под Солнцем, и воображаемая прямая проходит от Солнца через вершину гномона солнечных часов, производя одну прямую от Солнца до центра Земли. Вообразим ещё одну прямую, проведённую от конца тени гномона через вершину гномона к Солнцу на чаше в Александрии; и она будет параллельна уже названной прямой, поскольку уже сказано, что прямые от разных частей Солнца к разным частям Земли параллельны (а это он откуда знает?). Прямая, проведённая от центра Земли к гномону в Александрии, образует с этими параллельными равные накрестлежащие углы. Один из них — с вершиной в центре Земли, при встрече прямых, проведённых от солнечных часов к центру Земли, а другой — с вершиной на конце гномона в Александрии, при встрече с прямой, идущей от этого конца к концу его же тени от Солнца, там где эти прямые встречаются наверху. Первый угол опирается на дугу от конца тени гномона до его основания, а второй — на дугу с центром в центре Земли, проведённую от Сиены до Александрии. Эти дуги подобны между собой, поскольку на них опираются равные углы. И какое отношение имеет дуга на чаше к своему кругу, такое же отношение имеет и дуга от Сиены до Александрии [к своему кругу]. Но найдено, что на чаше она составляет пятидесятую часть своего круга. Поэтому и расстояние от Сиены до Александрии с необходимостью будет составлять пятидесятую часть большого круга Земли. Но оно равно 5 000 стадиев.  Поэтому весь круг будет равен 250 000 стадиям. Таков метод Эратосфена».

Позднее полученное Эратосфеном число было увеличено до 252 000 стадиев. Определить, насколько эти оценки близки к реальности, трудно, поскольку неизвестно, каким именно стадием пользовался Эратосфен. Но если предположить что речь идёт о греческом (178 метров), то его радиус земли равнялся 7 082 км, если египетским (157,5), то 6 287 км. Современные измерения дают для усреднённого радиуса Земли величину 6 371 км, что делает вышеописанный расчёт выдающимся достижением и первым достаточно точным расчётом размеров нашей планеты.via

   Обращаю внимание на то, что в Википедии кроме подгонки результатов также сначала говорится об измерении Эратосфеном длины окружности Земли, а в итоге делается вывод о точности вычисления радиуса Земли. В общем, в огороде бузина, а в Киеве - дядька, хоть они и взаимосвязаны.

   Диагноз очень простой: в учебниках по-прежнему будут тиражировать не дающий ничего для понимания сущности и практической применимости метод Эратосфена, но ни словом не будут упоминать связку "морская миля - угловая минута" как пример пропорционального мышления древних, потому что современный тренд заточен под дискретные вычислительные машины, а об аналоговых вычислительных машинах древности приходится рассказывать заново.

комментировать в ЖЖ

См. также:

Первобытная тригонометрия

Как люди догадались о сферической форме Земли?

Главный секрет древнерусского зодчества

Аналоговый расчет купола. Секрет Антонио Гауди

За какими "ведьмами" в действительности охотилась инквизиция

Египет, Франция и история метрологии

Мистика математического маятника

Правильная таблица умножения

Категория: обучение | Просмотров: 3350 | Добавил: igrek

  I.Grek © 2017
Конструктор сайтов - uCoz